首页休闲资讯

峰瑞资本李丰谈投资逻辑:什么时候才是投资AI的正确时机?

发布时间:2024-11-15 15:49:48

峰瑞资本李丰谈投资逻辑:什么时候才是峰瑞投资AI的正确时机?

雷锋网按:4月26日下午,未来科技学院宣布启动“未来科技资助计划”,资本资逻资A正确聚焦科研和科技创业。李丰北京市科委高新处王龄枞,谈投石勇、时候时机蒋田仔等国内著名科学家,才投峰瑞资本创始合伙人李丰等风险投资家出席了会议并作了主题演讲。峰瑞

现场,资本资逻资A正确投资家代表峰瑞资本创始人李丰做了主题为“深科技投资”的李丰演讲,讲述了峰瑞资本对前沿科技创新的谈投投资逻辑,对于人工智能的时候时机投资,他说:“如果线下数据线上化已经做得非常好,才投我们就投大数据。峰瑞如果大数据已经做得很好,资本资逻资A正确我们就投这个方向上的李丰人工智能。如果还没有进入到大量数据产生的阶段,逻辑上我们就先不投大数据,而是先投传感器。等到传感器被很好的工业化之后再投大数据,然后再投人工智能。”

以下是李丰的演讲全文,雷锋网做了不改变原意的删减:

为什么现在人工智能这么热?

我们从两年前就说要投科技,现在投的有三分之一是高科技,人工智能只是其中很小的一部分,我们在两年以前投的时候人工智能还没有现在这么热。

人工智能现在变成了很热的话题,我们自己投的大概有十个左右和这个方向有关。我们看人工智能,抽象来看,其实就是数据处理技术和建立模型效率的提高。

我们在看待市场正在发生的早期热点和现象的时候,通常会问自己这样几个问题。第一个问题,为什么是现在开始热?意思是为什么不是之前,也不是之后;第二个问题,为什么发生了这种模式,或者发生了这个概念、这个热点,而不是别的?

拿人工智能举例。为什么现在发生?为什么是人工智能?根据我们的简单理解,它其实代表数据处理效率的提升,不管是对类型复杂程度还是建立模型的有效性。那么它为什么会在这个时候出现呢?其实是因为数据已经多到需要用这个技术来处理,或者需要提高效率来处理。

那么大家就会考虑,这些所谓非常多、非常复杂的数据,到底是从哪儿来的?为什么会在今天出现这么多需要人工智能处理的数据?

我们把它分成两个部分,第一部分是线下数据大量线上化,在积累到一定规模后会带来对数据处理能力和效率提升的需求。如果某个领域当中,连数据化的过程都还没有开始,大概这个领域还轮不到人工智能先出现。第二部分则是新数据的大量产生,而不是把线下原有的东西通过某种形式搬到线上去。

过去十几年或者几十年里,科技进步的相关领域遵循了这样一个有意思的简单规律:一些底层工业技术的进展和快速提升,使得我们可以把一些比较重要的传感器变做的又小又厉害,而且很便宜,然后把这些传感器安装在了以前不能安的地方;接下来,我们让这些广义上制造了大量数据的传感器能够联网。

Uber、亚马逊Echo、摩拜单车出现的原因

比如,手机上很早就有摄像头了,只不过那个时候它的用途不大,但是到了今天,已经成为了必不可少的功能之一。为什么摄像头在诺基亚称王的时代没有得到如此广泛的应用?原因很简单,手机摄像头的技术进展巨大,变得又好又便宜。而且手机又可以连网,所以你拍摄的的照片、视频等数据就可以在网上大量传播。

再拿手机举例。由于智能手机的出现,还诞生了世界上最大的几家初创公司,比如国外的Uber,国内的“滴滴”。以前要订车,你要打电话说多长时间后要到哪儿接你,接你的人也要和你不停地说,现在状况是怎样的,车号是多少,现在走到哪里了等等。然而智能手机装在了GPS芯片之后,你只需要点击几下,就可以把所有的需求非常准确、清晰地表达出来,且你还可以知道司机离你有多远,多长时间到。这一切能够实现的原因,就是我们把以前没有装进手机里的GPS芯片装进了手机,这也是手机变成智能手机的原因。

亚马逊的智能音箱Echo也是相同的道理。亚马逊把麦克风阵列进行了重新组织,在播放音乐的时候会有麦克风搜集你的声音指令,然后再用人工智来处理这些指令,并执行相应操作,这就是智能音箱。

再比如摩拜单车,其实就是把GPS、电子锁、通讯芯片装在了原来没有被放过任何传感器的自行车上。因此,你可以通过智能手机知道自行车在哪儿,可以通过用智能手机开锁,这就是共享自行车出现的原因。

当然,我们现在还在尝试把更多传感器放到车里,比如激光雷达、毫米波雷达等等,加上计算和通讯芯片,使得我们在将来可以生产具备完全自动驾驶能力的汽车,也就是所谓的Level 4、Level 5。你把这个问题再抽象看,它只是把原来没有装在车上的传感器装到车上,让它实时产生各种各样的数据,然后再在各种维度上进行组合、加工和处理,由此诞生了新的商业模式。

从结论上可以回到我之前所说的:

1. 工业技术的突飞猛进,特别是传感器技术的提升,使得我们可以把传感器做的又小、精度又高、又便宜,然后越来越多地放在以前没有放过传感器的物体中去,比如放在自行车上,无人机上。

2. 然后让这些传感器联网,制造和传播大量的数据。

3.当数据积累达到一定的程度的时候,我们开始用更好的方式来处理这些数据,因此我们走到人工智能。

投资人工智能的逻辑

从结论上来讲,人工智能在大部分领域都不一定是最好的时机,除非这个领域已经按照我所说的顺序发生了很多事情。但是,在很多行业和很多事情上,我们终会走到人工智能的那一天。原因是有如此多的东西开始被加上这些传感器系统,让它们联网,并开始产生大量数据。总有一天这些数据会多到现在没办法处理的程度,因此这个时候这个方向就会进入人工智能。

我们的投资逻辑也是一样,如果线下数据线上化已经做得非常好,我们就投大数据。如果大数据已经做得很好,我们就投这个方向上的人工智能。如果还没有进入到大量数据产生的阶段,逻辑上我们就先不投大数据,而是先投传感器。等到传感器被很好的工业化之后再投大数据,然后再投人工智能。

以自动驾驶举例,现在还没有足够的多车被装上这些传感器,因此也没有足够多的数据,因为这些传感器从精度、尺寸和成本上来讲,都还没有达到大规模商用的阶段,所以先要解决的问题是改进和迭代这些传感器,直到它们能够被大规模地装在车上,这时候才过渡到大数据阶段,有了大数据才会最终走到人工智能。所以在还没有大规模商用传感器的领域,我们只能先投底层技术,直到他们已经成熟了。

以上是我为大家分享的经验和方法,谨供参考,如果有不全面的地方请批评指正。


雷锋网推荐文章《百度技术学院对外开放,一切都是为AI布局?

友情链接:

外链: